Effects of zinc binding on the structure and dynamics of the intrinsically disordered protein prothymosin alpha: evidence for metalation as an entropic switch.
نویسندگان
چکیده
Prothymosin alpha (ProTalpha) is a small acidic protein that is highly conserved among mammals. The human form has 110 amino acid residues (M.W. 12.1 kDa; pI approximately 3.5) and is found to be expressed in a wide variety of tissues. ProTalpha plays an essential role in cell proliferation and apoptosis, and it is involved in transcriptional regulation of oxidative stress-protecting genes. Despite the multiple biological functions ProTalpha has, the protein does not adopt a well-defined three-dimensional structure under physiological conditions. Previous studies have shown that the interaction between ProTalpha and some of its protein targets is significantly enhanced in the presence of zinc ions, suggesting that zinc binding plays a crucial role in the protein's function. In this work, we use nuclear magnetic resonance spectroscopy and electrospray ionization mass spectrometry to characterize the structure and dynamics of ProTalpha and its complexation with Zn2+. We found that zinc binding causes partial folding of the C-terminal half of ProTalpha, especially the Glu-rich region, while the N-terminal portion of the protein remains largely unstructured. The metalated protein also exhibits a significantly reduced flexibility. ProTalpha shows a high specificity for Zn2+, and the interactions with other divalent cations (Ca2+, Mg2+) are much weaker. On the basis of the site-specific information obtained here, as well as the results from previous studies, we propose that the conformational and dynamic changes upon zinc binding may act as an entropic switch that greatly facilitates the binding to other proteins.
منابع مشابه
Novel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملNovel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملMolecular Dynamics and Docking Investigations of Several Zoanthamine-Type Marine Alkaloids as Matrix Metaloproteinase-1 Inhibitors
Zoanthamine-type alkaloids display a wide spectrum of biological effects. This study aimed to examine the inhibitory effects of norzoanthamine and its ten homologues of zoanthamine class on human fibroblast collagenase by modeling a three-dimensional structure of the ligands at collagenase using energy minimization, docking, molecular dynamics simulation and MM-PB/GBSA binding free energy calcu...
متن کاملMolecular Dynamics and Docking Investigations of Several Zoanthamine-Type Marine Alkaloids as Matrix Metaloproteinase-1 Inhibitors
Zoanthamine-type alkaloids display a wide spectrum of biological effects. This study aimed to examine the inhibitory effects of norzoanthamine and its ten homologues of zoanthamine class on human fibroblast collagenase by modeling a three-dimensional structure of the ligands at collagenase using energy minimization, docking, molecular dynamics simulation and MM-PB/GBSA binding free energy calcu...
متن کاملMulti-Scaled Explorations of Binding-Induced Folding of Intrinsically Disordered Protein Inhibitor IA3 to its Target Enzyme
Biomolecular function is realized by recognition, and increasing evidence shows that recognition is determined not only by structure but also by flexibility and dynamics. We explored a biomolecular recognition process that involves a major conformational change - protein folding. In particular, we explore the binding-induced folding of IA3, an intrinsically disordered protein that blocks the ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 46 45 شماره
صفحات -
تاریخ انتشار 2007